Youming Guo 1,2,3,4Kele Chen 1,2,3,4,5Jiahui Zhou 1,2,3,4Zhengdai Li 1,2,3,4[ ... ]Changhui Rao 1,2,3,4,*
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Electronic, Electrical and Commutation Engineering, University of Chinese Academy of Science, Beijing 100049, China
5 National Key Laboratory of Optical Field Manipulation Science and Technology, Chengdu 610209, China
Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology, distinguished by its high optical throughput, reduced optical surfaces, and the incorporation of the deformable mirror. Typically, voice-coil actuators are used, which require additional position sensors, internal control electronics, and cooling systems, leading to a very complex structure. Piezoelectric deformable secondary mirror technologies were proposed to overcome these problems. Recently, a high-order piezoelectric deformable secondary mirror has been developed and installed on the 1.8-m telescope at Lijiang Observatory in China to make it an adaptive telescope. The system consists of a 241-actuator piezoelectric deformable secondary mirror, a 192-sub-aperture Shack-Hartmann wavefront sensor, and a multi-core-based real-time controller. The actuator spacing of the PDSM measures 19.3 mm, equivalent to approximately 12.6 cm when mapped onto the primary mirror, significantly less than the voice-coil-based adaptive telescopes such as LBT, Magellan and VLT. As a result, stellar images with Strehl ratios above 0.49 in the R band have been obtained. To our knowledge, these are the highest R band images captured by an adaptive telescope with deformable secondary mirrors. Here, we report the system description and on-sky performance of this adaptive telescope.
adaptive optics deformable secondary mirror visible imaging 
Opto-Electronic Advances
2023, 6(12): 230039
饶长辉 1,2,*朱磊 1,2张兰强 1,2饶学军 1,2[ ... ]冯忠毅 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
对太阳大气进行大视场高分辨力光学成像观测是开展太阳物理、空间天气等基础与应用研究的重要前提。对于地基太阳望远镜而言,为了消除地球大气湍流对光学系统的影响,自适应光学是高分辨力成像观测必备的技术手段,与此同时,为了突破大气非等晕性对传统自适应光学校正视场的限制,近年来多层共轭自适应光学技术等大视场自适应光学得到极大发展。本文首先梳理国外太阳自适应光学系统研制情况,重点介绍国内太阳自适应光学技术发展及应用情况,并进一步介绍了后续大视场太阳自适应光学技术发展情况以及目前所取得的成果。
太阳观测 自适应光学 多层共轭自适应光学 solar observation adaptive optics multi-conjugate adaptive optics 
光电工程
2018, 45(3): 170733
周航成 1,2,3,*饶学军 1,2饶长辉 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
在太阳自适应光学系统中, 通常需要利用太阳米粒结构等低对比度扩展目标采用相关算法测量波前误差。在对绝对差分算法和绝对差分平方算法在抛物线插值情况下的测量误差进行了理论分析比较的基础上, 利用实际采集的太阳米粒图像对这两种算法进行了实验验证。分析和实验结果表明, 太阳米粒图像绝对差分平方算法所得到的相关函数相比绝对差分算法更符合抛物面分布。采用抛物线插值时, 绝对差分平方算法的测量精度优于绝对差分算法。
图像处理 抛物线插值 绝对差分算法 绝对差分平方算法 太阳米粒图像 
激光与光电子学进展
2017, 54(5): 051004
Lin Kong 1,2,3Lanqiang Zhang 1,2,*Lei Zhu 1,2Hua Bao 1,2[ ... ]Changhui Rao 1,2
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction correlating Shack–Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.
010.1080 Active or adoptive optics 110.1080 Active or adoptive optics 
Chinese Optics Letters
2016, 14(10): 100102
Changhui Rao 1,2Lei Zhu 1,2,*Xuejun Rao 1,2Lanqiang Zhang 1,2[ ... ]Zhiyong Wang 1,2,3
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
A second generation solar adaptive optics (AO) system is built and installed at the 1-m New Vacuum Solar Telescope (NVST) of the Fuxian Solar Observatory (FSO) in 2015. The AO high-order correction system consists of a 151-element deformable mirror (DM), a correlating Shack–Hartmann (SH) wavefront sensor (WFS) with a 3500 Hz frame rate, and a real-time controller. The system saw first light on Mar. 16, 2015. The simultaneous high-resolution photosphere and chromosphere images with AO are obtained. The on-sky observational results show that the contrast and resolution of the images are apparently improved after the wavefront correction by AO.
010.1080 Active or adoptive optics 110.1080 Active or adoptive optics 110.0115 Imaging through turbulent media 
Chinese Optics Letters
2015, 13(12): 120101
张锐 1,2,3,*杨金生 1,2田雨 1,2饶学军 1,2
作者单位
摘要
1 中国科学院 自适应光学重点实验室, 成都 610209
2 中国科学院 光电技术研究所, 成都 610209
3 中国科学院大学, 北京 100049
焦面哈特曼传感器 (光场相机)具有同时测量距离信息和波前相位信息的优点, 国内目前还没有相关研究。本文对焦面哈特曼传感器的点目标波前相位复原能力进行了研究。首先从结构上将焦面哈特曼传感器与其他常用的波前传感器作了简单的比较, 然后对焦面哈特曼的成像原理进行了推导说明, 最后采用 MATLAB软件对焦面哈特曼传感器的远场光斑进行仿真, 通过相应的斜率估计算法, 进行波前复原。仿真结果表明, 焦面哈特曼传感器能够实现波前复原, 从而达到了仿真验证的目的。
自适应光学 点目标 光场相机 波前复原 adaptive optics point source plenoptic camera wavefront recovery 
光电工程
2013, 40(2): 32
作者单位
摘要
1 空军工程大学航空航天工程学院, 西安 710038
2 西安飞机工业(集团)有限公司技术中心, 西安 710089
为了克服部附件送修费用的一般模型不能方便进行敏感性分析的缺点,考虑设计阶段下输入数据采集的可行性,应用偏最小二乘回归理论,通过变量投影重要度分析,筛选出重量、价格、平均非计划拆卸时间、平均车间修理时间、SRU的个数5个参数。采用对数线性关系式,构建了部附件送修费用的参数模型,并通过实际值与回归值的误差分析验证了该模型的可靠度。根据得到的参数模型和工程经验,确定了各参数的单一函数表达式及其取值范围;结合切线斜率即敏感度的事实,仿真计算了各个参数变化的显著敏感区间。结果表明,该模型精度较高,能方便进行敏感性分析,可作为飞机设计阶段工程人员选择合适部附件的实用工具。
飞机维修 部附件 维修费用 偏最小二乘回归 敏感性 aircraft maintenance component maintenance costs Partial Least-Squares Regression (PLSR) sensitivity 
电光与控制
2012, 19(10): 102
舒强 1,2,3,*施宁平 1,2饶学军 1,2
作者单位
摘要
1 中国科学院 自适应光学重点实验室, 四川 成都 610209
2 中国科学院 光电技术研究所, 四川 成都 610209
3 中国科学院研究生院, 北京 100039
介绍了一种空间三自由度纳米定位平台,其应用背景为光刻投影物镜波像差检测系统的精密对准,因此对定位精度和定位速度都提出了很高的要求。首先简要介绍了空间三维纳米定位台;然后将模糊控制同传统PI(比例积分)控制相结合,利用定位偏差和偏差变化率信息,通过模糊推理实时调整PI控制参数,并在VC++环境下实现了模糊自整定PI参数的控制算法。实验结果表明,该控制方法较常规PI控制器能够有效地提高响应速度,减小阶跃响应超调量,保证了控制的实时性。
压电驱动器 纳米定位 精密对准 模糊控制 piezo-electric actuator nano-positioning precision alignment fuzzy control 
光学技术
2012, 38(2): 202
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 Yunnan Astronomical Observatory, National Astronomical Observatories,Chinese Academy of Sciences, Kunming 650011, China
A 37-element solar adaptive optics (AO) system was built and installed at the 26-cm solar fine structure telescope of Yunnan Astronomical Observatory. The AO system is composed of a fine tracking loop with a tip/tilt mirror and a correlation tracker, a high-order correction loop with a 37-element deformable mirror, a correlating Shack-Hartmann wavefront sensor based on the absolute difference algorithm, and a real time controller. The system was completed on Sep. 28, 2009 and was used to obtain AO-corrected highresolution solar images. The contrast and resolution of the images are clearly improved after wavefront correction by AO. To the best of out knowledge, this system is the first solar AO system in China.
自适应光学 相关跟踪器 相关夏克-哈特曼波前探测器 太阳黑子 太阳米粒 010.1080 Active or adoptive optics 110.1080 Active or adoptive optics 
Chinese Optics Letters
2010, 8(10): 966
杨金生 1,2,3,*饶学军 1,2饶长辉 1,2
作者单位
摘要
1 中国科学院光电技术研究所自适应光学研究室,四川 成都 610209
2 中国科学院自适应光学重点实验室,四川 成都 610209
3 中国科学院研究生院,北京 100049
根据哈特曼夏克(Hartmann-Shack)传感器工作的基本原理设计了一种角膜地形图测量仪,并在此基础上建立了一套基于哈特曼夏克传感器的角膜地形图测量系统。该系统的工作原理是使用会聚光束照射到角膜的外表面,通过哈特曼夏克传感器采集包含角膜面形信息的角膜表面反射光,而后通过角膜地形图复原计算获得角膜地形图数据。详细介绍了该仪器用于角膜测量的操作过程,并对该测量仪器的面形复原精度进行了测试。结果显示,与Zygo干涉仪的测量结果相比,角膜地形图测量仪复原面形的误差低于0.0818 λ均方根(RMS)。最后使用该仪器实际测量了健康成年人眼角膜,获得了实际角膜地形图的数据。
医用光学 角膜地形图 哈特曼夏克传感器 自适应光学 
中国激光
2010, 37(3): 826

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!